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Abstract-A numerical study of buoyancy-driven transport from an isothermal symmetrically heated L- 
shaped corner is reported. The effect of the length of the heated horizontal surface on heat transfer from 
the vertical surface and the concomitant{complex changes in the entrainment flow characteristics are 
discussed. Results are reported for a wide rahge of Rayleigh number. The unsteady laminar flows at high 
Rayleigh numbers exhibit interesting interactions between the horizontal and vertical entrainment flows. 
Their transient behavior is investigated in detail. The effect of Prandtl number, independent of Rayleigh 
number, IS shown to be significant. In the lower Rayleigh number range, the Nusselt number for each 
surface of the L-corner is compared with the Nusselt number for the corresponding single surface. The 
underlying basic physical processes are discussed. Steady and transient Nusselt number data are provided. 

1. INTRODUCTION 

BUOYANCY-INDUCED convective transport from cor- 
ners with different wall and ambient conditions is 
encountered in many applications. The flow and heat 
transfer from the combined surfaces of a corner are 
quite different from those of the individual surfaces. 
Interesting interactive flows arise. Angirasa and 
Mahajan [1] reviewed such flows, and classified cor- 
ners based on their orientation with each other and 
with the gravity vector. 

In this paper, we study the convective transport in 
a right angle horizontal corner (L-shaped) of the type 
shown in Fig. 1. Rodighiero and de Socio [2] reported 
experimental studies in air for L-shaped corners con- 
sisting of an isothermal heated vertical wall and adia- 
batic horizontal walls. They obtained heat transfer 
rates which are lower than those for a single heated 
vertical plate. Angirasa and Mahajan [I] studied the 
problem numerically in detail. The results indicated 
that the reduced heat transfer is due to the blockage 
of entrainment from the bottom side. They also stud- 
ied the effect of short pr@rusions at the leading edge 
which led to the determination of a critical length 
for the horizontal adiabatic surface, beyond which its 
length has no effect on the heat transfer rate from the 
vertical surface of the corner. The entrainment flow, 
however, was shown to change significantly with the 
length of the horizontal side. In both refs [1] and 
[2], Nusselt number correlations for large horizontal 
adiabatic aalls were reported that agreed well with 
each other. 

Ingham and Pop [3] studied the higher order effects 
on the vertical boundary layer using the method of 
asymptotic matched expansions. In this study. the 

vertical surface had constant heat flux condition and 
the horizontal surface was maintained as adiabatic. 
Ingham and Pop [4] also studied a horizontal corner 
with an arbitrary angle between the two surfaces, with 
the horizontal surface hot isothermal and the other 
adiabatic. In a later study [5], they presented a higher 
order analysis for a right-angle corner with the vertical 
wall insulated, and the horizontal surface maintained 
at a constant heat flux. 

Jaluria [6] numerically studied the interaction of 
natural convection wakes arising from two line ther- 
mal sources mounted on a vertical adiabatic surface 
with a cold isothermal wall forming the horizontal 
surface of an L-shaped corner. One of the line heat 
sources is aligned with the corner, and hence the hori- 
zontal wall absorbs heat from it. This heat removal 
reduces the buoyancy. The horizontal plate is also 

t<t, 

FIG;. 1. Geometry and coordinate : system 
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NOMENCLATURE 

9 gravitational acceleration u, reference convective velocity, = 
(;I” Grashof number, = yfl(t,- t,)L’,lv’ ,‘Mww- t,Kl 
k thermal conductivity of the fluid I/ non-dimensional velocity component 
L height of the vertical surface of the in the x-direction, = u/U, 

corner 1‘ velocity component in the y-direction 

Nu, average Nusselt number for horizontal V non-dimensional velocity component 
plate in the y-direction, = z;/U, 

Nu, average Nusselt number for the W length of the horizontal surface of the 
isothermal L-shaped corner corner 

NK,, average Nusselt number for single W* non-dimensional length of the 
horizontal plate horizontal plate, = W/L 

Nu,, average Nusselt number for single X.) space coordinates in the vertical and 
vertical plate horizontal directions, respectivejy 

iliu, average Nusselt number for vertical X, Y non-dimensional space coordinates. 
plate 

P pressure Greek symbols 
P non-dimensional pressure, = p/p Uz thermal diffusivity 
PV Prandtl number, = v/a ;; coefficient of thermal expansion = 
t temperature - (l/P) (WW, 
t, wall temperature 1’ kinematic viscosity 
t, ambient temperature P density 
T non-dimensional T time 

temperature, = (t- t,)/(tw- t,) z* non-dimensional time, = T(/,/L 
u velocity component in the X- ti stream function 

direction 0) vorticity 

shown to block entrainment. In their study of L- 
shaped corners, Angirasa and Mahajan [l] also 
reported results for the horizontal leg held isothermal 
at the ambient temperature. It was shown that for 
this case the Nusselt number of the vertical wall was 
slightly higher than when the horizontal surface was 
adiabatic. Luchini [7] studied the horizontal corner 
formed with a vertical hot isothermal plate and a 
cold isothermal plate joined at various angles between 
them. The method of matched asymptotic expansions 
was used, and numerical solutions were obtained by a 
finite-difference method. There was wide disagreement 
between analytical and numerical predictions of skin 
friction. No heat transfer results were given. 

For a horizontal corner with both surfaces heated. 
the experimental study of Ruiz and Sparrow [8] is 
significant. They reported measurements of heat 
transfer from isothermal square grooves (V-shaped) 
and horizontal corners (L-shaped). A higher range 
of Rayleigh number (0.3 x lo7 < Ra < 0.5 x 109) was 
considered, and the end effects were studied in detail. 

are considered. For some of the parameters, the trans- 
port is unsteady or periodic. Their time histories are 
investigated in detail. The underlying physical pro- 
cesses of these complex flows are explained. Complete 
Nusselt number data are presented for the horizontal 
and vertical surfaces of the corner individually, and 
also for the corner. 

2. ANALYSIS 

The corner configuration is shown in Fig. 1, where 
the height of the vertical surface is L and the length 
of the horizontal surface is W. The vertical and hori- 
zontal surfaces are aligned with the X- and j,-direc- 
tions, respectively. Both the surfaces are isothermal at 
t,. which is above the ambient fluid temperature, t,. 
Using the Boussinesq approximation, the governing 
equations in non-dimensional form for laminar, two- 
dimensional, incompressible buoyancy-driven flows 
with constant fluid properties are 

In the range of Rayleigh number considered, the flow 
visualization indicated that the flow was essentially 
turbulent. 

%:;+j-ll=o 

In this paper, we report a comprehensive numerical ’ ’ 
study of isothermal L-shaped corners for laminar 

!k+L.c!+“!Y$= 2 
(7x 

flow. The length of the horizontal side is varied from 
small protrusions to twice the height of the vertical + 

side. For square corners, different Rayleigh numbers 

(1) 

tT (2) 
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where P = pIpI/,’ is the non-dimensional pressure, 

Gr = C&t,--t.)L’ 

L I? 1 is the Grashof number and Pr = II/CC the Prandtl 
number. The transient terms in equations (2)-(4) are 
retained in anticipation of unsteady flows. When steady- 
state flows exist, the transient discretized equations can 
be marched to asymptotic steady-state solutions. 

In deriving equations (l)-~(4) from the dimysional 
form (see. for instance, Gebhart et al. [9]), tk fol- 
lowing non-dimensional terms were defined : 

x = x/L Y = 1’lL f+ = ZUJL 

u = u/u, v = 1%/U, T= (t-r,)/(f,-f,), 
(5) 

where UC is the reference convective velocity and is 
given by ,,/[gB( t, - t&C]. The governing equations 
(l)-(3) can be reduced to a vorticity--transport equa- 
tion by defining vorticity as 

au av 

W=ar-ax’ (6) 

The subsequent vorticityytransport equation is 

!%+“!%+v@~~+ 
8Y i’Y $!$+!$I. 

(7) 

A stream function Y is defined such that 

U = %/a Y and V = -8lujaX. (8) 

From equations (6) and (8). it follows that 

w = V’T. (9) 

Boundary conditions 
The physical boundary conditions of the L-shaped 

corner are 

J’=O I=/- 1/=0 r.=O \l 

J‘ + ‘CC_ f= 1, U=O 

.Y =o 0 d.r 6 w: 1(= 0 1’= 0 t = t,. (IO) 

The boundary conditions, in non-dimensional form. 
are given as 

y=0 T=l c:=0 I/=0 

Y+cr T=O U=O 

x=0 o< Y< w*: 1.:=0 V=O T=l, 

(11) 

where W* = W/L. Numerical boundary conditions 
for Y and 0~ will be given in the next section. 

l%aluation @Nusselt number 
The average Nusselt numbers for the heated iso- 

thermal vertical and horizontal surfaces of the L- 
corner. respectively, are given by 

(12) 

(13) 

The average Nusselt number for the L-shaped corner 
is given by 

Nul = (Nu, + Nu,,)/(l + W*). (14) 

3. NUMERICAL PROCEDURE 

The Alternating Direction Implicit method (ADI) 
of Peaceman and Rachford (see Roache [lo]) is used 
to solve the energy and vorticity-transport equations 
(4) and (7). Upwind-differencing is used for con- 
vective terms for numerical stability. The diffusive and 
buoyancy terms are discretized by central-diff- 
erencing. The stream function equation (9) is solved 
by the Successive Over Relaxation (SOR) method 
[lo]. Iterative convergence is obtained for stream func- 
tion solution at each time step. 

The following criteria are used to check for steady- 
state : 

where 4’ is T and w, n is time, and i and,j are space 
coordinates. The value of B is taken to be 10 ‘, It was 
found that the temperature field converges faster than 
the flow field. The same type of iterative convergence 
test was carried out for Y at each time step. The non- 
dimensional time step chosen is of the order of 0.005. 

Simpson’s rule is used to evaluate the average Nus- 
selt number, equations (12) and (13). An’open-ended 
formula has been employed to account for the effect 
of end-points (see Press et al. [l 11). 

Computcrtionul domain 
For an L-shaped corner with an adiabatic or cold 

isothermal horizontal wall, Angirasa and Mahajan [I] 
demonstrated that a rectangle formed with the two 
sides of the corner is sufficient as the computational 
domain to obtain accurate solutions if the length of 
the horizontal side is larger than the boundary layer 
thickness on the vertical leg. The effect of the com- 
putational domain for the heated corner is shown in 
Table 1 with the computational domain in the Y- 
direction taken as equal to W*, 2 W* and 3 W*. For 
W* = 1 .O and Ra = 0.7 x 106, the results clearly indi- 
cate the need for an extended computational domain 
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Table I. Ru = 0.7x 106, W* = 1.0 Grid independence stud) 

Truncated domain Extended domain 
A series of calculations was carried out with uni- 

form grid spacing to study the effect of the grid size 
on the solution. Based on this study, the number of 
grid points in each direction was chosen to be 81 
for a square computational domain (W* = 0.5 and 
Y max = 1.0). For larger W*, the grid points in the Y- 
direction were increased proportionately. The numeri- 
cal errors associated with the grid size are assessed as 
less than 1 o/b for flow and temperature fields, and 2% 
for Nusselt number. The error in Nu is estimated based 
on its asymptotic value as the grid size was decreased 
from 1140 to l/120. For the error in temperature and 
vorticity fields, the error estimate is based on the 
maximum difference of their respective values for the 
different grid sizes at the same location (see also ref. 
[I]). A larger error in Nu occurs because of the uncer- 
tainty of temperature gradients at the end-points. The 
combined uncertainty in Nusselt number due to grid 
size and domain is calculated as 2.8%. 

Y i l ld i i  = w* Y ,,,=2w* Y”,,, = 3 w* 

Nf-4. 9.55 8.02 7.89 

for accurate determination of the effect of the far-field 
on transport from the corner. An extended domain in 
the Y-direction twice the length of the heated hori- 
zontal surface is appropriate. 

For short horizontal protrusions at the leading edge 
of the vertical surface (W* < 0.25), the vertical 
boundary layer thickness is of the same order as the 
length of the horizontal protrusion. In this range of 

w*, YIna, = 0.5 gave accurate results. For a detailed 
quantitative discussion on the computational domain, 
see Angirasa and Mahajan [I]. 

Numericul boundury and initial conditions 
The numerical boundary conditions (T* > 0) for 

both types of domain are discussed by Angirasa and 
Mahajan [ 11. Figure 2 shows the boundary conditions 
for the extended domain employed in the present 
study. Wall vorticities are evaluated from the values 
of stream function at the adjacent grid points as 

a = W”,,, -ywYAn*, (15) 

where An is the grid distance normal to the wall [IO]. 
The initial conditions are 

r*=o Y=O 

(r) = 0 and T = 0 forallXand Y. (16) 

aT 
Tin = 0, - I aw 

ax OUt = 0, z = 0, w = 0 

I 
, T=O 

w=o 

I 
I 
I 

-a__--- 

I T=O 
I 

T=l ’ 
w=o w=o 
av -_=O ax 

FIG. 2. Numewal boundary conditions 

4. RESULTS AND DISCUSSION 

Steudy-stute soiutions,j& moderate Ruylrigh numbcvx 
Steady-state solutions have been obtained for the 

Rayleigh number range of 0.7 x 10” -0.7 x 106. At 
higher Rayleigh numbers, the solutions became either 
periodic or unsteady. Unsteady solutions and the 
effect of Prandtl number will be considered in a sub- 
sequent section. 

Ejfkct of’W* on fiow and heat trunsjtir. Results are 
presented for Ra = 0.7 x IO6 and Pr = 0.7 for W* 
varying between 0.0 and 2.0, where W* = 0.0 refers 
to a single flat vertical surface. A comparison of our 
computed value of NM for W* = 0.0 with those in the 
literature (Table 2) shows good agreement. 

Figure 3 shows the stream function contours for 
W* varying between 0.1 and 2.0. The buoyancy- 
induced flow adjacent to a single flat vertical surface 
entrains fluid from the side and from the bottom (see, 
for instance, ref. [I]). It was shown in ref. [I] that the 
presence of short adiabatic protrusions at the leading 
edge blocks the entrainment from the bottom. With 
increase in their extent, the entrainment shifts entirely 
to the top. When the horizontal surface is held iso- 
thermal at the same temperature as that of the vertical 
one, the entrainment characteristics are entirely 
different. as shown in Fig. 3, since the huoyancy- 
induced flows adjadent to both the surfaces now’ 
require entrainment. 

First, consider the entrainment requirements of the 

Table 2. Comparison of b’u for Ru = 0.7 x 10’. Er = 0.7 and 
w* = n 

Present 

15.52 

Churchill and 
Chu 1121 

15.53 

Gebhart 
Cf nl. [9] 

15.04 



Buoyancy-induced convection 

FIG. 3. Stream function contours for Cv = 10” and Pr = 0.7. $,,,, = 0. W* = 0.1 (a). 0.25 (b). 0.5 (c) 
(d), 1.5 (e) and 2.0 (f). A$ = 50 x lo-’ (a. b), 60 x IO 4 (c. d) and 70 x IO-~’ (e. f). 

0.75 
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FIG. 3 continued. 

vertical boundary layer. Although the heated hori- 
zontal side blocks the entrainment from the bottom. 
the buoyancy-driven flow over the horizontal side 
feeds the vertical boundary layer flow at the corner. If 
the horizontal extension is short. additional required 
entrainment is provided from the ambient on the side 
(Fig. 3(a, b)). With increase in IV*, the entrainment 
from the side shifts to the top (Fig. 3(c)) until at larger 
IV* it is almost entirely from the top (Fig. 3(ddf)). 

For the horizontal side of the corner, we note that 
the entrainment fluid is fed from below the surface for 
all IV* > 0. This is quite different from the entrain- 
ment characteristics observed for a single horizontal 
surface (see Ishiguro et al. [13] and Angirasa and 
Mahajan [ 141). There, the entrainment is essentially 
horizontal and from the ambient above the surface. 
Also. for a single horizontal surface with a plume in 

the middle, the plume flow has its source of buoyancy 
only at its origin, which it expends during its growth. 
On the other hand, the vertical boundary layer flow 
of the L-shaped corner has a continuous heat supply 
as it washes the vertical surface. The entrainment for 
the vertical wall layer is much stronger than for the 
free boundary plume. Hence, for flow over a single 
horizontal surface, the entrainments for the horizontal 
wall flow and for the central vertical plume flow can 
both be fed horizontally from the side. For the L- 
corner, on the other hand, the entrainment for the 
vertical flow is supplied from the side and the top, 
while the horizontal flow entrains from the bottom. 

These entrainment characteristics have an impor- 
tant significance in the choice of computational 
domain in numerical simulations. Only a domain 
extended beyond IV* in the Y-direction can include 
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the entrainment for the horizontal flow from below. 
A computational domain truncated at W* entrains 
fluid from the side for the horizontal flow, while 
increasing the entrainment velocities for the vertical 
flow. The result is increased heat transfer rates, as 
shown in Table 1. 

Isotherm contours for various W* are shown in 
Fig. 4. For short protrusions, as expected, the flow 
over the horizontal surface does not exhibit boundary 
layer characteristics. With increasing W*, the bound- 
ary layer is established. The temperature gradients are 
weakest in the corner region. Also, there is no plume 
formation on the horizontal surface at this Rayleigh 
number, even for W* = 2.0. There is a uniform flow 
pattern of the fluid washing the horizontal surface 
and then turning over the corner to form the vertical 
boundary layer. 

The calculated values of Nusselt number a? a func- 
tion of W* are shown in Fig. 5. The vertical Nusselt 
number (Nu,) falls sharply with a short protrusion at 
the leading edge. Two possible causes are as follows. 
The first is the considerable reduction in the cold fluid 
entrainment from the bottom (see Angirasa and 
Mahajan [ 11). The second is the preheating of the fluid 
as it flows over the horizontal surface, which reduces 
the temperature gradients on the vertical wall. With 
increasing W*, a relatively smaller fraction of entrain- 
ment flow is preheated by the horizontal surface. This 
results in a decrease in Nu,. When W* exceeds about 
1 .O, the entrainment flow for the vertical plate is well 
established and changes little with further increase in 
W*. Correspondingly, Nu, stays essentially constant. 
Also shown in Fig. 5 are Nui, and NuL. As expected, 
Nu,, increases with W*. The average Nusselt number 
for the corner, NuL, is simply the average of Nu, and 
NM,,. 

Effect qf’Rayleigh number. To study this effect, cal- 
culations have been performed for a square corner 
( W* = 1) and Pr = 0.7 for three values of the Grashof 
number, 104, 10’ and 106. Steady-state solutions are 
obtained for all three Gr values. 

In Fig. 6 stream function contours are shown, while 
Fig. 7 gives the corresponding isotherms. At Gr = 104, 
the transport is dominated by diffusion. Also, there 
is no boundary layer formation at this low Grashof 
number. As Gr is increased to 105, boundary layer 
type flow can be discerned adjacent to the vertical 
side. At Gr = 106, steady boundary layer flows are 
established over both surfaces. 

An interesting aspect to be pointed out here is that 
while entrainment velocities increase with increasing 
Grashof number, the sources of entrainment are 
unaffected by it. It appears that, for this range of Ra, 
the geometry of the flow configuration determines 
where the entrainment comes from. 

The variation of Nusselt number with Rayleigh 
number (Pr = 0.7) is presented in Fig. 8. At lower 
Rayleigh number Nu,, is larger than Nu,, while at 
higher Ra the trend is reversed. At lower Ra, the 
vertical boundary layer flow is mostly fed by the pre- 

heated fluid from the horizontal flow. Hence the tem- 
perature gradients on the vertical leg are lower than 
those on the horizontal side. The result is a decreased 
Nu,. At higher Gr, however, the preheating is more 
than offset by a larger entrainment of cold fluid from 
the top into the vertical boundary layer. This sub- 
stantially increases the heat transfer rate. We recall 
that at a higher Gr, the vertical boundary layer domi- 
nates in capturing the entrainment flow from the top 
which, in turn, blocks any flow from the side and 
forces the horizontal flow to entrain from the bottom. 

In Fig. 8, comparisons are also made with the Nus- 
selt number of a single vertical plate (Nu,,) and a 
single horizontal plate (Nu,,J. The correlations for 
these are respectively taken from Churchill and Chu 
[ 121 and Lloyd and Moran [15]. In each case, the 
Nusselt number of the single plate is substantially 
higher than of the corresponding surface of the L- 
corner. 

As explained earlier, the lower heat transfer rate on 
the vertical wall of the L-corner is due to the pre- 
heating of the fluid as it first flows over the horizontal 
surface. The reason for smaller Nub compared to Nu,,, 
may be due to the lower entrainment for the horizontal 
plate of the L-comer. Ruiz and Sparrow [8] made 
measurements in water for a higher range of Rayleigh 
number than considered here. They found that at the 
higher end of Ra considered, Nu,, is larger than Nu,,. 
The possible reason cited for this is an acceleration in 
the flow over the horizontal surface because of the 
vertical boundary layer. However, when their results 
are extrapolated to the lower range of Ra, Nub is lower 
than Nu,,. It is possible that at the high Ra in their 
experiments the large entrainment of the vertical 
boundary layer acts as a forced flow imposed over the 
natural convection horizontal flow. At lower Ra, the 
imposed forced flow is insignificant over the hori- 
zontal surface. The entrainment characteristics, as dis- 
cussed earlier, seem to suggest that the velocities over 
the horizontal surface drop at lower Ra. 

Unsteady laminarjows 
At higher Rayleigh numbers, the numerical cal- 

culations for laminar flow resulted in unsteady flow 
and transport. Ruiz and Sparrow [8] cbncluded that 
the flow in their experiments-at least ovgr the hori- 
zontal surface-was turbulent. In Fig. 9, traqsient 
stream function contours are shown for Pr = 0.7 and 
Ra = 0.7 x 107. Figure 10 gives the corresponding iso- 
therms. The initial conditions are given by equation 
(16). They imply that the corner is impulsively heated 
from a condition of no flow and no heat transfer. 
Initially a plume begins to grow at the leading edge of 
the horizontal plate. This is in sharp contrast to flow 
over a single horizontal plate, where the plume forms 
at the mid-plane. In this initial phase, the entrainment 
for the vertical boundary layer is induced from the top. 
As the plume at the horizontal leading edge grows, it 
competes with the vertical wall boundary layer for 
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FIG. 4. Isotherms for Gr = IOh and Pr = 0.7. T,.,,,,, = 1 andAT=O.l. W* =O.l (a),0.25 (b),0.5(c).0.75 
(d) and 1.5 (e). 
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FIG. 4-continued. 

20.0 

17.5 - .OE06, Gr= 1 Pr=0.7 

-.- Nu L 

0.0 -f 
,+’ 

/ / 
00 0.5 1 .o 1.5 2.0 

W’ 

FIG. 5. Variation of Nusselt number with W* for Gr = IO’ and Pr = 0.7 

entrainment from the top. This is clearly illustrated 
by the clockwise vortex in Fig. 9(b). 

Recall that the vertical wall boundary layer is stron- 
ger than the vertical free boundary plume. Hence, in 
the competition for the entrainment from the top, 
the wall layer wins. The resulting adverse pressure 
gradient drives the plume towards the wall. The plume 
ultimately merges with the vertical wall boundary 
layer (Figs. 9(c, d) and lO(c. d)). 

Once the initial rising plume merges with the ver- 
tical wall layer, smaller plumes (or ‘ripples’) continue 
to form on the horizontal plate, but they cannot rise 
because, by then, the vertical wall layer is well estab- 
lished and completely dominates the flow. The for- 
mation of ripples on the horizontal wall has definite 
periodicity as they travel along both the horizontal 
and vertical flows. This is shown in Figs. 9(e-h) and 
lO(e-h). and more conclusively in the Nusselt number 
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FIG. 6. Stream functwn contours for W* = I and Pr = 0.7 at various values of Grashof number. $,,,, = 
(a) Gr = IO“. Ai) = 0.01 ; (b) (;I. = IO’, A@ = 0.01 ; (c) Gr = 106, A$ = 6x IO-‘. 

0. 
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m 

7. Isotherms for W* = I and Pr = 0.7 at various values of Grashof number. T,,,, = 1.0, AT = 
Gr = IO4 (a). 10’ (b) and lob (c). 

0.1. 
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2 

i 

IO’ 000 

FIG. 8. Variations of Nusselt number with Rayleigh number. L, average for the L-corner; h, horizontal 
plate of the L-corner : v. vertical plate of the L-corner ; sh. single horizontal plate : sv. single vertical plate. 

~ariatian with time, as shown m Fig. 11. The variation 
of the vertical wall Nusselt number has much larger 
amplitude than that of the horizontal wall. This is to 
be expected because the ripples formed on the hori- 
zontal surface are all fed to the vertical flow, where 
their compound effect is reflected in the large ampli- 
tude of the Nusselt number variation with time. 

An intriguing aspect of the transient flow devel- 
opment is the initial formation of the plume at the 
horizontal leading edge, rather than in the middle of it. 
For the plume to form in the middle of the horizontal 
surface, it would have to compete with the stronger 
vertical wall boundary layer for the entrainment fluid. 
The best location for the plume to form is the hori- 
zontal leading edge, where it can draw entrainment 
fluid from the ambient, far away from the vertical 
surface. 

Effect of Prandtl number. At Ra = 0.1 x IO’, the 
flow and transport for Pr = 7.0 are entirely different 
from those discussed for Pr = 0.7. Figures 12 and 13 
respectively show transient stream function contours 
and the corresponding isotherms for Pr = 7.0. The 
initial conditions for this study are the same as those 
for Pr = 0.7. At high Prandtl number, the plume at 
the horizontal leading edge continues to rise vertically 
upward (Figs. 12 and 13). Both the vertical wall layer 
and the free boundary plume establish themselves sep- 
arately. At Pr = 7.0, the thermal diffusion is confined 
to a narrow region. As a result, the strong interaction 
between the vertical wall and horizontal leading edge 
flows observed for Pr = 0.7 is absent in this case. 

The competing entrainments of the two vertical 
Hows introduce instabilities in the flows. These are 
manifested in either random swaying of the plume 
(Figs. 12(f, g) and 13(f, g)), or the creation and trans- 
mission of ripples on the horizontal surface (Figs. 
12(d, e) and 13(d, e)). The total flow and thermal 
fields remain unsteady. This behavior is also reflected 
in the variation of Nusselt number, shown in Fig. 14. 

The differences in solutions due to Prandtl number 
are not confined to unsteady high Rayleigh number 
flows. Table 3 lists the values of Nusselt number for 
steady low Rayleigh number flows for Pr = 0.7 and 

7.0. Even here the differences are substantial. The 
differences are probably due to the interaction of 
entrainment flows with unequal thermal diffusion. 

It is not possible to compare our numerical results 
with the experimental measurements of Ruiz and 
Sparrow [8] because the range of Rayleigh number is 
different. Their experiments in water covered 
0.3 x 10’ < Ra -C 0.5 x 109. The flow visualizations 
and the exponent of Ra in their Nu vs Ra relation 
indicate that they obtained fully developed turbulent 
flow in that range of Ra. They also obtained quasi- 
steady Nusselt numbers. It can be concluded that at 
the Rayleigh number considered by Ruiz and Sparrow 
[8], the flows are unsteady turbulent. The present 
numerical study complements the above work by pro- 
viding physical and quantitative information for lami- 
nar flows at the lower Rayleigh number range. 

Finally, it needs to be mentioned that there is no 
plume growth at the leading edge in the experiments 
of Ruiz and Sparrow [8]. The reason is not hard to 
discern. In our comparison of unsteady laminar flows 
for Pr = 0.7 and 7.0, we noted that the higher thermal 
diffusion for Pr = 0.7 disperses the plume. If we con- 
sider laminar and turbulent flows for the same Prandtl 
number (based just on molecular diffusivities), the 
turbulent thermal dispersion is considerably larger 
than the molecular one, and this precludes plume 
growth. In addition, at much higher Ra, the vertical 
wall layer becomes even stronger and ultimately swal- 
lows any plume growth at the horizontal leading edge. 

5. SUMMARY 

In this article, we reported a numerical study of 
buoyancy-induced flow and heat transfer from sym- 
metrically heated isothermal L-shaped horizontal cor- 
ners. The highlights of the study are summarized 
below. 

1. Short heated protrusions at the leading edge of 
a heated vertical surface reduce the heat transfer rates 
on the vertical surface due to blocked entrainment 
from the bottom, and the preheating of the fluid which 
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FIG 
(a). ‘10 9. 

for Ra 
(b). Transient 25 stream 40 (d), function 55 80 contours (f). 90 and 

= 0.7 x Pr = 0.7 and W* = 1.0. = 0. r* = 5 
(c). (e), (g) 120 (h). IO’, A$ = 50 x 10m4 (a), 100 x 10m4 $*a,, (b), 20 x 10 ’ 

(c), 10 x IO- 3 (d). 10 x lo-’ (e), 80 x 10 4 (f), 80 x 10 4 (g) and 90 x tom4 (h). 



2452 D. ANGIRASA et al. 

FIG. c)-continued. 
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FIG. IO. Transient isotherm contours for Ra = 0.7 x IO’, Pr = 0.7 and W* = 1.0. T,,,, = 1 .O and AT = 0. I 
?* = 5 (a), IO (b), 25 (c), 40 (d), 55 (e), 80 (f), 90 (g) and 120 (h). 



Buoyancy-induced convection 2455 

FIG. IO-continued. 
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FIG. IO-continued. 
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FIG,. I I. Nusselt number vartatiorl with time for Ro = 0.7 x IO-. Pr = 0.7 and I+‘* = 1.0. 
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‘15 12. Transient 35 
= x Pr = 7.0 and W* = I .O. = 0. T* = 10 

(b), (c), stream 75 (d), function 80 90 contours 100 for Ra and 130 0.7 lo’, = 60 x 10m4 (e), (f), (g) (h). A$ (a), 10 x 10-j $w.,, (b), 10 x IO- 
(c), 70 x 10 4 (d), 60 x 10 4 (e), 70 x 10 4 (f), 90 x 10 4 (g) and 60 x 10 4 (h). 
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FIG. 12-continued. 
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FIG. 13. Transient isotherm contours for Rn = 0.7 x lo’, Pr = 7.0 and W* = I .O. r,,,, = I .O and AT = 0.1 
T* = 10 (a). I5 (b). 35 (c). 75 (d), X0 (e), 90 (f). 100 (g) md 130 (h). 
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FE. I3--conlimed. 
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FIG. 13-continued 
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Ra=0.7E07, Pr=7.0 
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FIG. 14. Nusselt number variation with time for 
Ra = 0.7 x IO’, Pr = 0.7 and W* = 1.0. 

Table 3. NM for Ra = 0.7 x 10’ and w* = 1. 

Pr N&l Nu, Nu, 

0.7 4.82 4.45 4.64 
7.0 5.67 5.43 5.56 

flows over the vertical surface. A further increase in 
the length of the heated horizontal extension mini- 
mally reduces the heat transfer rates on the vertical 
surface. The heat transfer rates on the horizontal sur- 
face expectedly increase with its length. 

2. The entrainment characteristics undergo com- 
plex changes with an increase in the length of the 
horizontal surface. The vertical boundary layer 
entrains from the side, and from the top for short 
protrusions, and entirely from the top for large hori- 
zontal extensions. The horizontal flow entrains from 
the bottom. 

3. The sources of entrainment do not change with 
an increase in the Rayleigh number as long as the 
geometric configuration of the flow is unchanged. 

4. In the range of Rayleigh number considered here 
for laminar flows, the Nusselt number for each surface 
of the L-corner is less than that for the corresponding 
single surface. 

5. At a higher Rayleigh number, the flows are 
unsteady. For lower Prandtl numbers, there is no 
plume growth on the horizontal surface, while for 
higher Prandtl numbers, an unsteady plume develops 
at the leading edge of the horizontal surface. 

6. The Prandtl number has a significant effect on 
both steady and unsteady flows, independent of the 
Rayleigh number. 
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